Core i7家族深度了解!
2006年,Intel正式发布了酷睿2/Core 2处理器,同时宣布了每年更新CPU的“Tick-Tock”计划,“Tick”代表CPU制作工艺上的改进,而“Tock”则代表CPU架构上的更新。作为“Tock”计划的65nm Core 2,先进的Core架构使得其拥有强大的性能与更好的能耗比,一直处于领先水平。2007年,“Tick”计划的45nm Core 2(Penryn)如期发布,性能继续保持领先。2008年,“Tock”计划如期到来,采用全新Nehalem架构的CPU即将发布,那就是Core i7。
Core i7是一款基于全新Nehalem架构的CPU,采用LGA 1366接口,集众多先进技术于一身,如集成内存控制器、三通道技术支持、全新QPI总线、超线程技术的回归、Turbo Mode内核加速等。为大家送上了Core i7 940,使大家对Core i7有了初步了解。
Core i7家族来访,从左到右分别是Core i7 920、965、940
Core i7采用的是全新Nehalem架构,虽然是新架构,但Nehalem还建立在Core微架构(Core Microarchitecture)的基础上,通过大幅增强改进而来的,外加增添了超线程(HT)、三级Cache、TLB和分支预测的等级化、集成内存控制器(IMC)、QPI总线和支持DDR3等技术。比起从Pentium 4的NetBurst架构到Core 微架构的较大变化来说,从Core 微架到Nehalem架构的基本核心部分的变化则要小一些,因为Nehalem还是4指令宽度的解码/重命名/撤销。
Nehalem的核心部分比Core微架构改进了以下部分:
全新缓存设计:采用三级缓存设计,L1的设计与Core微架构一样为内核缓存;L2采用超低延迟的设计,每个核心各拥有256KB的L2缓存,同时L2缓存也是内核缓存;L3则是采用共享式设计,被所有核心共享使用。
集成了内存控制器(IMC):内存控制器从北桥芯片组上转移到CPU片上,支持三通道DDR3内存,内存读取延迟大幅减少,内存带宽则大幅提升,最多可达三倍。
快速通道互联(QPI):取代前端总线(FSB)的一种点到点连接技术,20位宽的QPI连接其带宽可达惊人的每秒25.6GB,远超过原来的FSB。QPI最初能够发放异彩的是支持多个处理器的服务器平台,QPI可以用于多处理器之间的互联。
Nehalem的核心部分比Core微架构新增加的功能主要有以下几方面:
New SSE4.2 Instructions (新增加SSE4.2指令)
Turbo Mode (内核加速模式)
Improved Lock Support (改进的锁定支持)
Additional Caching Hierarchy (新的缓存层次体系)
Deeper Buffers (更深的缓冲)
Improved Loop Streaming (改进的循环流)
Simultaneous Multi-Threading (同步多线程)
Faster Virtualization (更快的虚拟化)
Better Branch Prediction (更好的分支预测)
Core i7的改进:原生四核+全新缓存设计
Core 2 Quad系列四核处理器其实是把两个Core 2 Duo处理器封装在一起,并非原生的四核设计,通过狭窄的前端总线FSB来通信,这样的缺点是数据延迟问题比较严重,性能并不尽如人意。Core i7则采用了原生四核设计,采用先进的QPI(QuickPath Interconnect,下面将进行介绍)总线进行通讯,传输速度是FSB的5倍。
Core i7采用全新三级缓存设计,L1和L2缓存为内核缓存,具有超低延迟,其中L1缓存由32KB指令缓存+32KB数据缓存组成。Core i7的L2缓存和Core 2的L2缓存并不相同,Core i7的L2与L1均为内核缓存,每个内核256KB(256KBx 4)。L3采用共享式设计,被片上所有内核共享,容量为8MB。
Core i7的改进:采用全新QPI总线
Core i7的Nehalem架构最大的改进在前端总线(FSB)上,传统的并行传输方式被彻底废弃,转而采用类似于PCI Express串行点对点传输技术的通用系统接口(CSI),Intel称之为QuickPath Interconnect(QPI)总线技术。QuickPath的传输速率为6.4Gbps,这样一条32bit的QuickPath带宽就能达到25.6GB/sec。QuickPath的传输速率是FSB 1333MHz的5倍,前者虽然数据位宽较窄,但传输带宽仍然是后者的2.5倍。更高带宽的DDR3内存加上三通道技术的引入,FSB的传输带宽已经完全不能满足要求,成为系统瓶颈,因此全新的QPI总线引入势在必行。通过QPI总线,可以有效地降低了处理器和各个硬件之间数据传输的延迟,能有效地提高系统性能。
不难看出,AMD在2003年推出HyperTransport高速串行总线,并逐渐在高性能运算领域建立优势之后,Intel也迎头赶上,全新的QPI总线会把Core i7以及后续处理器的性能提升到新高度。
Core i7的改进:内存控制器+三通道技术
内存控制器(Memory Controller)相信大家不会感到陌生,竞争对手AMD早在2003年K8时代CPU已经集成了内存控制器,能大幅提升内存性能。而Intel方面则表示由于时机还不适合,即使是2006年推出的Core2处理器也没有集成内存控制器,这也使得优秀Core 2在内存性能上一直处于Athlon 64 X2与Phenom系列的下风。
Intel当然不允许内存性能处于下风的局面一直存在,2008年推出的Core i7终于拥有集成内存控制器IMC(Integrated Memory Controller),而且可以支持三通道的DDR3内存,运行在DDR3-1333(支持XMP技术的内存更可运行在1600MHz的频率),内存位宽从128位提升到192位,这样总共的峰值带宽就可以达到32GB/s,达到了Core 2的2-4倍。处理器采用了集成内存控制器后,它就能直接与物理存储器阵列相连接,从而极大程度上减少了内存延迟的现象。
Core i7的改进:超线程技术回归
超线程技术(Hyper-Threading,HT),最早出现在130nm的Pentium 4上,超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。超线程技术使得Pentium 4单核CPU也拥有较出色的多任务性能,现在通过改进后的超线程技术再次回归到Core i7处理器上。而超线程技术又称为同步多线程技术(Simultaneous Multi-Threading,SMT)。
同步多线程(Simultaneous Multi-Threading,SMT)是2-way的,每核心可以同时执行2个线程。对于执行引擎来说,在多线程任务的情况下,就可以掩盖单个线程的延迟。SMT功能的好处是只需要消耗很小的核心面积代价,就可以在多任务的情况下提供显著的性能提升,比起完全再添加一个物理核心来说要划算得多。比起Pentium 4的超线程技术,Core i7的优势是有更大的缓存和更大的内存带宽,这样就更能够有效的发挥多线程的作用。按照Intel的说法,Nehalem的SMT可以在增加很少能耗的情况下,让性能提升20-30%。
Core i7的改进:自动超频,核心加速
Turbo Mode,故名思义,就是加速模式,它是基于Nehalem架构的电源管理技术,通过分析当前CPU的负载情况,智能地完全关闭一些用不上的核心,把能源留给正在使用的核心,并使它们运行在更高的频率,进一步提升性能;相反,需要多个核心时,动态开启相应的核心,智能调整频率。这样,在不影响CPU的TDP情况下,能把核心工作频率调得更高。
文本处理再提速!完整SSE4指令支持
完整的SSE 4(Streaming SIMD Extensions 4,流式单指令多数据流扩张)指令集共包含54条指令,其中的47条指令已在45nm的Core 2上实现,称为SSE 4.1。SSE 4.1指令的引入,进一步增强了CPU在视频编码/解码、图形处理以及游戏等多媒体应用上的性能。其余的7条指令在Core i7中也得以实现了,称为SSE 4.2。SSE 4.2是对SSE 4.1的补充,主要针对的是对XML文本的字符串操作、存储校验CRC32的处理等。